高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种基于 B-P 神经网络判断照明场景的自动曝光方法
本发明公开一种基于 B-P 神经网络判断照明场景的自动曝光方 法,包括以下步骤,S1 通过视频采集系统获得原始图像;S2 将原始图 像划分为多个区域;S3 求每个区域的图像亮度平均值,获得亮度矢量; S4 设计 B-P 神经网络,将亮度矢量作为神经网络的输入,对照明场景 进行判断;S5 根据神经网络的判断结果,计算图像的理想亮度;S6 将 原始图像的实际亮度与理想亮度的偏差作为 PID 算法的初始输入,利 用 PID 算法获取理想亮度对应的理想可控量;S7 依据理想可控量,获 得曝光时间 t 和模拟
华中科技大学 2021-04-14
构建基于卷基神经网络的胃癌HE病理切片AI辅助诊断算法
悬赏金额:95万元 发榜企业:百盛(广州)生物制品有限公司  需求领域:环医疗器械及设备及医学专用软件;临床医学-肿瘤 产业集群:生物医药与健康产业集群 技术关键词:人工智能;病理学;组织形态学
百盛(广州)生物制品有限公司 2021-11-01
一种基于多尺度池化的卷积神经网络人脸识别方法
本发明公开了一种基于多尺度池化的卷积神经网络人脸识别方法。该方法利用多尺度池化的卷积神经网络来提取人脸图像的特征以实现人脸识别。在构建卷积神经网络的过程中,采用卷积和最大值采样交替的方法对特征进行深度提取,另外对每层卷积层采用了多尺度池化的策略和步骤,一并输入到全连接层,使其具有多尺度的、固定大小的特征列向量。本发明不需要对输入的人脸图像做截取或调整尺寸,不同尺寸的图像都能使用同一个网络进行训练和识别。基于多尺度池化的卷积神经网络不但解决了输入图像尺寸可以不固定的问题,使得网络能够提取多尺度的人脸特征,而且对网络性能带来极大的提升,将会促进多尺度池化的卷积神经网络在人脸识别中的广泛应用。
浙江大学 2021-01-12
移动机器人的多脉冲神经网络控制器导航控制方法
本发明公布了一种移动机器人的多脉冲神经网络控制器导航控制方法,属于移动机器人目标点趋近自主导航控制器所属领域,用于移动机器人的导航控制。其技术方案是:本发明包括目标点趋近控制器、沿墙行走控制器、避障行为控制器,控制器中采用了脉冲神经网络,在神经网络中同时融入时空信息。本方法在不同条件下设定各控制器权值,并根据不同控制器的权值顺序作为控制器激活与否的判别顺序,通过控制器激活及转换条件的使用,实现各控制器之间的相互转换。本发明通过神经网络的在线训练,实现机器人的在线自主学习,与先前的基于模块化的控制器相比,控制策略简便易行,通过各控制器之间的转换,更加有效、高精度地控制移动机器人实现目标点趋近导航控制任务。
河北师范大学 2021-04-27
基于多尺度预测的深度卷积神经网络的无人机语义地图构建方法​
专利名称:
天津工业大学 2021-01-12
一种基于神经网络的反演大气可降水量的MODIS模型改进方法
本发明公开了一种基于神经网络的反演大气可降水量的MODIS模型改进方法,包括以下步骤:S1:利用MODIS三通道比值法反演大气可降水量PWV,记为PWVMODIS;S2:利用BP神经网络建立测站处的纬度φ、测站处的高程h、年积日doy、PWVMODIS与测站GPS/MODIS反演的PWV残差RES之间的非线性关系;S3:对BP神经网络模型进行训练;S4:将φ、h、doy以及PWVMODIS作为输入参数代入BP神经网络模型,并计算出GPS测站处PWV残差RESBP;S5:利用RESBP补偿PWVMODIS,获得大气可降水量PWV=PWVMODIS+RESBP。本发明有效提高了建模精度。
东南大学 2021-04-11
一种基于果蝇算法优化广义回归神经网络算法的茶叶储存时间分类方法
项目成果/简介:本发明涉及一种基于果蝇算法优化广义回归神经网络算法的茶叶储存时间分类方法,旨在通过改进的广义回归神经网络解决茶叶储存时间分类问题,属于茶叶储存时间分类领域.其原理利用电子鼻传感器模拟人感官品评的功能和特征,采集不同时间不同传感器的特征值,构建样本集.利用果蝇算法优化广义回归神经网络,获得广义神经网络的平滑因子,进而构建毛峰茶叶储存时间的FOAGRNN分类模型和方法.本发明的有益效果在于将果蝇算法优化广义回归神经网络算法应用于毛峰茶叶数据中,提高预测毛峰茶叶储存时间分类的效率和准确度,为消费者提供茶叶储存时间分类的有效方法.
安徽农业大学 2021-04-10
一种基于果蝇算法优化广义回归神经网络算法的茶叶储存时间分类方法
本发明涉及一种基于果蝇算法优化广义回归神经网络算法的茶叶储存时间分类方法,旨在通过改进的广义回归神经网络解决茶叶储存时间分类问题,属于茶叶储存时间分类领域.其原理利用电子鼻传感器模拟人感官品评的功能和特征,采集不同时间不同传感器的特征值,构建样本集.利用果蝇算法优化广义回归神经网络,获得广义神经网络的平滑因子,进而构建毛峰茶叶储存时间的FOAGRNN分类模型和方法.本发明的有益效果在于将果蝇算法优化广义回归神经网络算法应用于毛峰茶叶数据中,提高预测毛峰茶叶储存时间分类的效率和准确度,为消费者提供茶叶储存时间分类的有效方法.
安徽农业大学 2021-04-29
基于卷积神经网络和小波灰度图的旋转机械故障诊断方法
本发明公开了一种基于卷积神经网络和小波灰度图的旋转机械故障诊断方法,其包括以下步骤:(1)将振动位移传感器及振动速度传感器设置在旋转机械上,利用所述振动位移传感器及所述振动速度传感器采集所述旋转机械的振动信号;(2)对采集到的所述振动信号进行多尺度小波分解,以得到小波灰度图;(3)按照预先训练过的卷积神经网络的输入形式,对所述小波灰度图进行预处理;(4)将预处理后的所述小波灰度图输入到所述卷积神经网络,所述卷积神经网络对接收到的所述小波灰度图进行分析诊断,以得到所述旋转机械的故障诊断结果。
华中科技大学 2021-04-13
基于多尺度大核卷积双残差神经网络的超分辨率图像重建方法
本发明公开了一种基于多尺度大核卷积双残差神经网络的超分辨率图像重建方法,适用于图像处理领域,包括以下步骤:对数据集进行裁剪,将裁剪后原始低分辨率图像输入到预处理模块中,进行图像归一化和数据增强操作,生成预处理后的低分辨率图像;预处理后的低分辨率图像组成失真图像块数据集,构成训练集、验证集和测试集;根据已有的失真图像块数据集,构建一个基于多尺度大核卷积双残差神经网络的超分辨率图像重建方法;将数据集输入到构建的多尺度大核卷积双残差神经网络中分提取语义特征,并用模型的上采样模块对特征图进行放大,生成超分辨率图像。本方法引入多尺度大核卷积与双残差结构,在神经网络中使用视觉注意力机制,提取的特征更符合人类视觉感知特性,使图像超分辨率图像重建更加准确。
南京工业大学 2021-01-12
首页 上一页 1 2 3 4 5 6
  • ...
  • 727 728 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1