高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
大豆多糖的制备工艺
一、 简要综述    广东省产学研项目资助,获广东省科技进步三等奖。    二、 具体介绍    1、项目简介    采用现代科技手段对纤维质大豆副产物进行深入的研究与加工,使得营养成分得以全面开发,解决废弃大豆副产物所造成的环境污染。通过本项目的实施,解决纤维质大豆副产品的加工技术难题,并形成以生物技术为核心的深加工和综合利用技术,研究应用酶法水解技术、膜法分离技术、生物技术、干燥技术及保藏技术等,采用综合加工利用新工艺及设备,将低值大豆副产物开发为高附加值产品,提高企业的技术水平,为保健食品、大宗食品和化学工业提供优质的功能新基料。    2、创新要点    可溶性大豆膳食纤维产品色泽浅、蛋白含量低、风味稳定、得率高,具有较好的溶解性、较低的粘度、较高的吸油能力等。 3、推广情况    已经推广山东谷神生物科技有限公司。
江南大学 2021-04-11
大豆肽的制备工艺
一、 简要综述    国家"十五"科技攻关、广东省工业攻关项目资助,获广东省科技进步三等奖。    二、 具体介绍    1、项目简介    项目以大豆加工副产物-豆粕为原料,通过酶工程、膜分离、低温萃取、活性碳脱色、真空浓缩、闪蒸干燥等现代生物和食品技术的集成运用,开发得到功能性大豆肽。功能性大豆肽产品具有优良的色泽、风味,蛋白质含量≥85%,总肽含量≥80%,溶解度≥90%,正电荷肽含量≥40%,平均相对分子质量≤2000 道尔顿。大豆肽经精制处理,其氮回收率不低于80%,活性回收率不低于85%。    2、创新要点    对蛋白质可控酶解得到富含正电荷的功能性大豆肽、一种适合制备功能性大豆肽的酶膜耦合技术。    3、推广情况    已推广黑牛食品股份有限公司。
江南大学 2021-04-11
聚丙烯酸酯原位聚合具有互穿网络结构的 聚氯乙烯复合树脂
1.项目开发的背景聚氯乙烯树脂(PVC)是五大通用塑料中仅次于聚乙烯的第二大品种,在我国,其产能和产量均居世界第一,它已普遍应用于建筑、化工、电器仪表、日用品等各种领域。由于其综合性能好、价格低廉、用途广泛,在国民经济中有着重要的地位,但在加工应用中存在冲击强度低,耐热性和耐候性差等缺点。通常采用接枝共聚,共混等方法向PVC中添加高分子弹性体,使共混体系既可保持硬质PVC高模量,高刚性的特点,又可大大提高其缺口冲击强度,明显改善其低温冲击性能,开发高抗冲击耐热与耐候性优良的特种专用PVC一直是国内外研发的重点。聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂是针对PVC树脂的缺口冲击强度低,共混改性时改性剂分散不均,易分相渗出,改性效率低而开发的高抗冲改性PVC专用树脂,其实质仍是橡胶增韧PVC树脂。它是以核-壳结构的聚丙烯酸酯弹性体为基质,与VC单体进行原位聚合后形成具有互穿网络结构的改性聚氯乙烯树脂。一般通过聚丙烯酸酯胶乳或聚丙烯酸酯粉粒存在下的VC水相悬浮或乳液聚合而制得。采用纳米级核-壳胶乳粒子原位聚合氯乙烯进行微观结构改性是聚氯乙烯树脂改性的第三代增韧技术,其优点在于改善宏观混合的不均匀性,质量良莠不齐,以及对共混加工条件依赖性强、加工工艺和配方复杂、增韧效率低、耐候性差等局限性,同时解决纯粹接枝共聚物大分子链流动性差、所制材料模量低,制品抗冲性能和刚性模量等不能同时兼顾的弊端。2、工业化放大生产2011年3月我校与河北盛华化工有限公司合作,自筹经费,进行了悬浮法聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂的中试,并进行了大量中试试验研究。其研究工艺分三步,一是丙烯酸种子乳液的合成。二是悬浮法聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂合成,三是复合树脂高速离心脱水,干燥。工业化试验之前共进行17批次种子乳液聚合,70批次原位悬浮聚合,并连续稳定生产50批。至2011年9月已成功完成聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂中试试验,为进一步工业化放大生产试验奠定了坚实的基础。中试试验过程中解决了以下几个关键技术问题:(1)聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂在加工后出现黑点问题;(2)冲击强度不高的问题;(3)颗粒形态问题;(4)分散体系与乳液体系共稳定性问题。2011年9月底实现13.5m3工业化装置试运行生产,至2011年12月完成工业化生产用种子乳液聚合40余批,原位聚合及干燥30余批,经过配方和工艺的进一步改进,共生产各项性能合格的聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂60余吨,产品性能与技术经济指标完全达到了项目预期目标。3.本项目的技术成果与产品应用聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂在河北盛华化工有限公司成功实现工业化,填补了国内聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂产品的空白,增加了我国PVC新品种,对推动我国PVC市场从通用型转变到特种专用型有着及其重要的作用,同时对我国高品质硬质PVC制品的发展具有积极的推动作用。该产品集抗冲、耐磨、耐老化、耐腐蚀、阻燃、绝缘性好等优异性能于一身,抗冲击性能尤其突出,其技术性能指标已达到并超过同等ACR含量下美国Rohm & Hass公司KM-355P改性PVC树脂的水平,作为高抗冲PVC-M管道专用料应用前景十分广阔。该产品的不断推广应用,将进一步促进管道工业、高品质建材行业和其它塑料制造业的发展,经济效益和社会效益明显。聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂成功实现工业化预示了国内PVC产品市场转变的一个良好开端,它将逐步推动我国PVC树脂产品向系列化、专业化的水平,相信经过几年或十几年时间的发展,我国的PVC树脂牌号就会像产能一样形成规模,改变目前以生产大批量的通用树脂为主,而许多PVC下游加工企业所需的PVC专用树脂主要依赖进口的不良局面,简化了加工工艺配方和过程,节约了能源消耗。本项目成功工业化产品有很多优点:  (1)在传统PVC悬浮树脂生产设备基础上,引入聚丙烯酸酯乳液,与VC单体进行原位悬浮聚合,形成了聚丙烯酸酯与PVC两相之间稳定的互穿网络结构,大幅度提高了聚氯乙烯的力学性能,为生产高品质的管材等高端产品奠定了材料结构基础;互穿网络结构材料微观结构的均匀性显著改善了新型复合树脂的缺口冲击韧性。同时,使用该专用树脂生产制品时无需添加其他增韧剂,与传统ACR或等效CPE共混改性PVC相比,原材料成本有所降低,简化了工艺流程,节约了能耗;(2)通过配方和工艺的调整,解决了聚丙烯酸酯乳液在悬浮聚合体系中分散的均匀性问题,实现连续工业化试生产,复合树脂质量稳定。同时建立了新型复合树脂的产品企业标准。(3)该复合树脂耐候性好,加工塑化时间短,不存在CPE-g-VC树脂加工时黄色指数变化明显的缺点,也不像EVA-g-VC树脂那样对加工温度敏感,使得PVC的加工性能得到改善;(4)该项目的成功实施为乳液与悬浮两大聚合方法之间协同关系找到了规律性认识,这对其它类似体系共聚物的制备研究具有积极的理论指导意义。公司质管处对产品粘数、热老化白度、筛余物、水份、鱼眼等指标进行了检测,作为高抗冲击专用料先后经过河北省分析测试研究中心、河北省氯碱工程技术研究中心检测分析,其常温简支梁冲击强度大于30.0kJ/m2,-10℃时为大于8.0kJ/m2,比普通PVC制品高10倍。我们研制的聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂经过张家口市盛华伟业管业有限公司,张家口市方盛塑业有限公司和河北汇泰塑业有限公司作为高抗冲专用料用于制作管材和板材制品性能均能达到并超过国家建材行业指标要求,而且产品流动性好、不需添加任何增韧剂和加工助剂,可大幅度降低了生产成本,减少了环境污染,经济和社会效益显著。其中所生产的各规格管材按CT/T272-2008标准检测后,密度、二氯甲烷、落锤、维卡、回缩、液压六项指标全部合格。经过多家大型PVC加工企业的检测和应用试验为该产品市场定位和开拓应用新领域打下了坚实的基础。聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂首先是作为高抗冲PVC-M管道专用料使用,另外还可用于其它方向的管道工业、高品质建材行业、汽车工业,以及电器仪表和工程塑料等应用领域。
河北工业大学 2021-04-13
一种可控大长径比纳米探针的制备装置与制备方法
本发明提供一种可控大长径比纳米探针的制备装置,通过设置 腐蚀稳压电路、腐蚀电压切断电路、探针浸没判断电路,与单片机配 合实现对腐蚀过程中的腐蚀电压、探针浸没深度、探针提升速度等重 要参数的精确控制,能够制备大长径比、可控长径比、耐磨损、可回 收、成本低的纳米探针。本发明还提供一种可控大长径比纳米探针的 制备方法,采用探针浸入指定深度后不再停留腐蚀,而是一直不断提 起探针,从而形成针尖长、针尖曲率半径平滑变化、长径比大的新型 纳米探针,具有不易磨损、可回收再利用、使用成本低等显著优点, 并通过对腐蚀电
华中科技大学 2021-01-12
一种可控大长径比纳米探针的制备装置与制备方法
本发明提供一种可控大长径比纳米探针的制备装置,通过设置腐蚀稳压电路、腐蚀电压切断电路、探针浸没判断电路,与单片机配合实现对腐蚀过程中的腐蚀电压、探针浸没深度、探针提升速度等重要参数的精确控制,能够制备大长径比、可控长径比、耐磨损、可回收、成本低的纳米探针。本发明还提供一种可控大长径比纳米探针的制备方法,采用探针浸入指定深度后不再停留腐蚀,而是一直不断提起探针,从而形成针尖长、针尖曲率半径平滑变化、长径比大的新型纳米探针,具有不易磨损、可回收再利用、使用成本低等显著优点,并通过对腐蚀电压、探针浸没深度
华中科技大学 2021-04-14
新型的碳海绵的制备
近年来,随着微型化、便携式电子产品的迅猛发展,基于超级电容器和电池的超薄、柔性储能器件受到越来越广泛的关注。组装该类高性能的柔性储能器件需要三维柔性电极材料。三维柔性碳电极是最佳的选择,主要因为其惰性的化学特征,而且可以用于几乎所有的电解质体系。目前文献报道的三维柔性碳电极主要是基于碳纳米材料,如碳纳米管和石墨烯等,然而这类柔性电极制备比较复杂,成本较高,难以实现大规模化生产。 我们创新性地采用直接高温碳化聚合物泡沫的方法成果制备了碳海绵。该方法简单,且易于大规模化生产。所制备的碳海绵具有以下特征: 稳定的三维多孔网络结构; 良好的弹性; 可控的孔隙度,孔隙度范围:95-99.9%; 可控的密度,密度范围:3-100 mg/cm3; 可控的导电性,导电率范围:1-30 s/cm; 超疏水和超亲油性。
江西师范大学 2021-05-05
乳液法制备减反膜
大面积多功能高效减反射膜技术近年来受到广泛关注。针对目前采用溶胶-凝胶法、层层自组装法、化学蒸镀法等方法存在制备过程繁琐、生产效率低、所得减反膜呈开孔结构、存在环境稳定性差、力学性能劣等问题。本项目采用半连续乳液聚合的方法一步合成出可控聚合物/硅复合结构纳米粒子,并利用提拉镀膜的方法将其涂敷在玻璃基材上,通过一定温度的热处理制备出闭孔型减反膜涂层。研究体系pH值、单体比例、硅烷偶联剂的类型及用量等条件对所形成复合纳米粒子涂敷出的减反膜折射率、减反效果以及耐候性、耐刮伤性、力学性能的影响。力争制备出多功能抗反射涂层。旨在从本质上提升减反膜的光学性能、耐候性和机械特性。通过理论计算与实验验证并举,探索减反膜实现的新途径。改变目前减反膜的生产工艺问题。本项目与现有的减反膜工艺相比,具有工艺简单,解决了环保问题(一般减反膜都需采用醇做溶剂,而本工艺全程采用水来在溶剂)。而且减反效果优异,目前在可见光波段较宽的范围能够达到99.5%以上的透过率。而且增透波段可以通过需求进行调整。 这个项目起源于与赛肯森公司的合作项目。这家公司的主要产品之一是减反膜。据该公司介绍,大规模制备减反率可以达到99.5%的减反膜是他们公司的核心竞争力。其产品一直出口。从此可见,前景比较乐观。后面我们可以考虑与该企业继续进行合作或者找一家更为合适的合作企业。
同济大学 2021-04-11
阿莫曲坦制备技术
曲坦类药物属于选择性5-HT受体亚型激动剂,疗效好,安全性高,近年来占据了偏头痛 药物的大部分市场份额。阿莫曲坦是第五个上市的曲坦类药物,于2001年5月首次被FDA批准 于美国上市。该药是曲坦类药物中效果最好的一种,它生物利用度高 (70%~80%) ,维持时间 长且复发率低。 项目组在文献基础上,对阿莫曲坦的合成工艺进行探索和改进,以对硝基苯甲磺酰吡咯烷 为起始原料,经还原、重氮化、还原、环合、成盐制备得到苹果酸阿莫曲坦,其中环合收率为 48%,具有良好的应用前景。
华东理工大学 2021-04-11
依折麦布制备技术
依折麦布 (Ezetimibe) ,化学名为1-(4-氟苯基)-(3R)-[3-(4-氟苯基)-(3S)羟丙基]-(4S)-(4-羟苯 基)-2-氮杂环丁酮,是由Schering-Plough和Merck公司合作研制的新型胆固醇吸收抑制剂,于 2002年10月被FDA批准,并于同年11 月在德国首先上市,商品名 Ezetrol。临床上适用于治疗 原发性高胆固醇血症,纯合子家族性高胆固醇血症 (HoFH) 和纯合子谷甾醇血症 (或植物甾醇 血症) ,依折麦布2009年全球的销售达到了23.99亿美元,已经成为了国内外争相进行仿制的对 象。本项目以价廉易得原材料研发出了一种制备依折麦布的高效方法。
华东理工大学 2021-04-11
三氯蔗糖的生产制备
近年来,在我国,肥胖症、糖尿病、心血管病和龋齿等多发病的产生都与饮食习惯及膳食 结构有关。而长期以来,蔗糖一直是人类获取甜味食品的主要来源,作为一种高热量、相对低 甜度的食品配料,长期大量食用会导致肥胖症、高血脂、糖尿病和龋齿等疾病,因此,开发应 用安全健康的低热量、高甜度及具有功能性的非营养性甜味剂以满足健康、科学饮食需求显得 尤为迫切。因此,我国甜味产品发展重点之一就是安全性高,无营养、无热量的高倍甜味剂。 高倍甜味剂产品的特点是甜度高,用量少,而用量很少安全性就更高,而且单位甜度的成本也 都比蔗糖等传统甜味产品低很多,这也是拉动全球开发应用具有功能性的高倍甜味剂的主要动 力。三氯蔗糖在人体内几乎不被吸收,热量值为零,可供肥胖、心血管病和糖尿病等患者食 用。是一种新型功能性高倍甜味剂。目前三氯蔗糖已获得美国等约七十多个国家的批准使用, 其在世界范围应用比较多,迄今为止已在全球约3000多种食品中添加使用。
华东理工大学 2021-04-11
首页 上一页 1 2
  • ...
  • 22 23 24
  • ...
  • 299 300 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1