高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于 FIR 数字滤波器原理的数字幅频均衡功率放大器装置
本实用新型涉及功率放大器技术,具体涉及基于 FIR 数字滤波器原理的数字幅频均衡功率放大器装 置,包括依次连接的信号预处理模块、前级放大模块、数字幅频均衡模块、DAC 后级滤波模块和功率 放大模块,与数字幅频均衡模块连接的 FPGA 模块,以及与 FPGA 模块连接的触摸屏模块。该放大器装 置基于 FPGA,以嵌入式处理器 NIOSⅡ为控制核心,输出功率可达到 10W,电路效率达 66%,经过数 字幅频均衡处理后,以 10KHz 时输出信号电压
武汉大学 2021-04-14
一种基于开槽结构的四分之一模基片集成波导滤波器
本发明公开了一种基于开槽结构的四分之一模基片集成波导滤波器,包括四分之一模基片集成波导弧形腔,四分之一模基片集成波导弧形腔通过基片集成波导圆形腔沿任意两条相互垂直的磁壁分割得到,四分之一模基片集成波导弧形腔包括介质基片,介质基片的上表面设有上金属层,介质基片的下表面设有下金属层,介质基片中沿四分之一模基片集成波导弧形腔的周向均匀分布有贯穿上金属层和下金属层的金属通孔。本发明相对于传统的基片集成波导圆形腔有效实现了小型化。并且,相对于传统的多层结构,本发明结构简单,加工方便。此外,相对于传统的微带结构,本发明的滤波器品质因数高,损耗小。
东南大学 2021-04-11
InP基多量子阱光调制器/开关、可调式多模干涉耦合器、谐振腔滤波器、2×4分路器技术
基于平面光波光路(PLC)技术的各类光功能器件,是实现现代高速光网络、高速光信号处理、大容量光互连节点和终端设备中光信号处理模块的基础。/lineInP基多量子阱PLC器件基于成熟的半导体工艺,以脊波导为基础,具有体积小、功耗/损耗低、可靠性高、性价比高等优点,在国际上即将形成新的产业热点。电子科学与工程学院光子学与光通信研究室顺应这一趋势,潜心攻关,埋头研究,历时四年完成了InP多量子阱PLC单元器件理论与实验研究。在国内首次建立了PLC光路设计和光学特性测试平台,探索出国产化工艺加工途径,取得多项自主知识产权,成功地研制出InP基多量子阱PLC无源光子器件。包括光调制器/开关、可调式多模干涉耦合器、谐振腔滤波器、2×4分路器等,于2007年2月通过了教育部组织并主持的科技成果鉴定,达到国际先进水平。
东南大学 2021-04-10
一种超导可控电抗器
本发明公开了一种超导可控电抗器,超导控制线圈、工作线圈、 低温杜瓦和磁屏蔽铁芯均为空心圆筒状;高导磁铁芯由圆柱状的上、 下导磁铁芯构成,分别固定在低温杜瓦的上、下盖板上;两块铁芯之 间通过环氧树脂材料进行填充和支撑;环氧树脂的填充高度为工作线 圈高度的 1/2 到 1/3 之间;各超导控制线圈位于低温杜瓦内,且从里到 外同轴或近似于同轴布置;工作线圈套在低温杜瓦外,且均位于磁屏 蔽铁芯内。高导磁铁芯优选由铁粉芯或磁粉芯制成。本发明可以减少 超导线材的用量以及降低低温杜瓦制作的技术复杂度,并且还可以有
华中科技大学 2021-04-14
高温超导电动悬浮列车静悬试验台超导磁体的自由度控制与安全防护系统研究
技术成熟度:技术突破 1.原理:结合磁浮列车极端运行工况,充分考虑运行环境的强磁场,深入研究机-电-磁耦合机制,精确调节磁体悬浮姿态,以实现超导磁体在液氮温区(-196℃)自稳定悬浮。 2.创新点: (1)研发国产化低功耗悬浮控制模块,能耗较进口设备降低35%; (2)突破-196℃环境下多系统协同控制技术,填补国内工程化应用空白。 3.应用场景: (1)高速磁浮列车静悬试验台 (2)精密仪器运输平台 (3)航空航天地面测试装备 4.应用案例:前期开发的自由度控制系统,已被合作团队应用且效果较好。
长春工业大学 2025-05-20
高温超导车载变压器及低温恒温器制造项目
中国在国际超导磁悬浮上展开的竞争,争取轨道交通未来的主导权,需要发展超导磁悬浮技术,基础是:超导、杜瓦、制冷。本项目新材料新技术所生产的超导变压器为高速列车的重要组件,该项目已经得到中车、科技部支持,完成相关的设计,进行开发。 掌握了超导牵引变压器和构建复合低温恒温器相关的复合材料的核心技术。探索出该材料的成型工艺及高强度工艺,成功设计了团队成功设计和建造包括(1)高温超导变压器、(2)低温杜瓦装置(故障限制器、核磁共振成像仪、电机、磁推进装置和超导交通装置及配套的低温杜瓦装置),该技术用于国家重点研发计划中。
北京交通大学 2021-05-09
高温超导车载变压器及低温恒温器制造项目
项目成果/简介: 中国在国际超导磁悬浮上展开的竞争,争取轨道交通未来的主导权,需要发展超导磁悬浮技术,基础是:超导、杜瓦、制冷。本项目新材料新技术所生产的超导变压器为高速列车的重要组件,该项目已经得到中车、科技部支持,完成相关的设计,进行开发。 掌握了超导牵引变压器和构建复合低温恒温器相关的复合材料的核心技术。探索出该材料的成型工艺及高强度
北京交通大学 2021-01-12
一种混合调节超导可控电抗器
本发明公开了一种混合调节超导可控电抗器,它包括铁芯组, 超导控制绕组,工作绕组,超导短路绕组和非导磁低温杜瓦;铁芯组 包括依次并行排列且相互间隔的控制绕组铁芯,工作绕组铁芯和短路 绕组铁芯,各绕组铁芯通过上、下铁芯板无缝连接成一个整体;超导 控制绕组和超导短路绕组均放置于非导磁低温杜瓦中,短路绕组铁芯 可以由一个或多个在空间上错开的铁芯柱构成,工作绕组用于与电网直接连接,超导控制绕组用于与直流电源连接。本发明采用分档调节 和连续调节相互配合,实现电抗器的大容量连续调节。工作绕组电感 调节范围大,谐波
华中科技大学 2021-04-14
一种基于滤波调制器的 FSK 调制系统
本发明公开了一种基于滤波调制器的 FSK 调制系统,其能够产 生连续的 FSK 光信号,可以作为光学标签或光学净荷,FSK 调制系统 包括激光器、LiNbO3 调制器、随机信号发生器、正弦信号发生器、2 个反相器和滤波调制器;其中激光器产生连续激光,进入 LiNbO3 调 制器,在正弦信号的驱动下,输出载波拟制副载波;载波拟制副载波 进入滤波调制器模块,在数据信号的驱动下进行调制,得到频率不同、 强度耦合对称的信号光
华中科技大学 2021-04-14
锡烯超导研究
超导体临界磁场是指在外加磁场下超导态转变成正常态所需的磁场强度。它是超导的基本性质之一,也是决定超导体应用的一项重要指标。第一个被发现的超导体——水银,它的临界磁场仅有几十毫特斯拉。近年来人们发现,某些厚度仅有几个原子层的薄膜可以在几十特斯拉的磁场下保持超导,这大大超出了人们的预料。为了解释这个现象,人们提出了伊辛配对机制,认为这是由于这一类特殊材料的晶格不具备中心反演对称性,参与超导配对的电子具有了锁定的自旋取向所致。在此框架下,人们通过在非中心对称的材料中寻找,又发现了多个具有巨大临界磁场的超导体。然而,也有人认为这完全是材料维度效应所导致的,挑战了伊辛配对机制。同时,伊辛超导理论的一个重要预言——临界磁场的低温发散行为也一直未被实验验证。最近,清华大学物理系张定副教授和薛其坤教授领导的中德合作团队,打破了此前理论的限制,首次在具有高对称性的材料——锡烯薄膜中观测到了数倍于理论预期的临界磁场,并清晰地观测到了温度逼近绝对零度时临界磁场的发散行为,给出了伊辛超导非常强的证据。北京时间3月13日,相关研究成果以《锡烯薄膜中的第二类伊辛配对机制》(“Type-II Ising pairing in few-layer stanene”)为题在线发表于《科学》(Science)上。图1. 实验测得的锡烯超导中奇异的上临界磁场行为。颜色代表样品的电阻(紫色区间为正常态,深蓝色区间为超导)。圆圈标出了不同温度下的上临界磁场。实线和虚线代表了不同的理论模型,其中红色为本工作中提出的第二类伊辛配对机制。左下和右上的示意图分别画出了锡烯的原子结构和能带。薛其坤教授研究团队长期从事原子级可控的高质量薄膜的制备和物性探索,在二维超导领域发现了单层铅膜超导、单层铁硒/钛酸锶界面高温超导和双原子层镓膜超导的格里菲斯奇异性等。2018年,团队核心成员张定副教授等人首次发现灰锡薄膜—锡烯—具有超导电性( 《自然-物理》Nature Physics, 14,344(2018)),随后发现其面内上临界磁场超过了常规超导体的上限—泡利极限。为了进一步深刻理解锡烯的二维超导特性,研究团队与德国马普固态研究所的约瑟夫-福森(Joseph Falson)博士和尤根-斯密特(Jurgen Smet)教授合作,利用极低温强磁场下原位旋转测量技术,系统测量了不同厚度锡烯样品在近乎整个超导温度区间上临界磁场的变化行为,发现上临界磁场不仅超出泡利极限,而且在温度逼近绝对零度时仍无饱和迹象,这是典型的伊辛超导行为。由于锡烯具有中心反演对称性,这些行为不能用现有的伊辛超导理论解释。为了理解这一令人困惑的现象,清华大学物理系徐勇副教授和北京师范大学刘海文研究员等开展了深入的理论研究。论文链接:https://science.sciencemag.org/content/early/2020/03/11/science.aax3873
清华大学 2021-04-10
首页 上一页 1 2 3 4 5 6
  • ...
  • 323 324 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1