高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
长循环硅基复合薄膜负极
随着微电子行业等微型化科技的快速发展,薄膜材料得到广泛应用。薄膜电池作为微型电源器件具有广阔发展空间。薄膜材料对于硅基负极而言,其短程储锂深度和单向膨胀的优势能够有效克服硅基材料的本征导电率低和体积膨胀大的问题。开发无需粘结剂的硅基负极薄膜材料对于薄膜负极发展意义深远。项目通过物理沉积方法,实现电极结构设计与导电型材料复合,改善硅基材料低导电率问题,优化硅基材料体积膨胀缓冲空间,从而完成无粘结剂硅基材料制备和倍率、循环等性能的提高。
厦门大学 2021-01-12
长循环寿命的钒基固溶体贮氢合金
本发明提供了一种长循环寿命的钒基固溶体贮氢合金,该合金解决了钒基固溶体贮氢合金在吸放氢循环过程中贮氢量衰减较快的问题。该贮氢合金属钒基BCC型,化学式为VaTibCr(100-b-c-d-e)FecAldSie,式中,50≤a≤60,15≤b≤25,1≤c≤15,0<d≤2,0<e≤1(a,b,c,d,e均为原子百分含量)。该合金生产方法简单,在氢的贮存、运输以及燃料电池等方面具有广泛的应用前景。
四川大学 2021-04-11
硅基拓扑光子学
研究团队利用能谷-赝自旋耦合原理,在绝缘层硅(SOI,silicon-on-insulator)上制备出能谷光子晶体平板。该拓扑光学结构具有~40nm的特征尺寸,其光子模式(因工作于光锥以下)能够较好地局域在平板内,抑制了平板外损耗。他们制备了直线形、Z形和Ω形等三种拓扑光学通道,测量出高透平顶透射光谱带,证实了近红外波段下拓扑保护的宽带抗散射传输。采用硅微盘技术产生相位涡旋源,无需低温和强磁等极端环境,实现了拓扑界面态的选择性激发,实现了亚微米量级耦合长度的宽带光子路由行为,验证了能谷-赝自旋耦合等拓扑光学原理。在硅基平台上证实拓扑光子学原理,是目前国际学术前沿的聚焦度较高的领域之一。研究团队过去在拓扑光子学原理方面的工作,多次引起国际同行关注,论文入选ESI高被引。该工作中,他们深入系统地发展出硅基拓扑光学等关键理论,攻克了数十纳米加工工艺等关键技术,率先在硅基光子平台与拓扑光子学之间建立了联系,突破了单一自由度调控的传统框架,提出了硅基中多自由度耦合的多维调控新机制,为微纳光学与光子学、光二极管等关键光子芯片器件、混合集成光子学、高保真光量子信息光学、非线性光学等领域,提供了新方法和新思路。
中山大学 2021-04-13
硅基GaN功率开关器件
宽禁带半导体硅基GaN器件以其高效率,高开关速度高工作温度抗辐时等特点,成为当前国际功率半导体器件与技术学科的研究前沿及热点,也是业界普遍认可的性能卓越的下代功率半导体器件。而S基GaN因其S基特性.能够突破新材料在发展初期的成本牦颈且易与S集成电路产业链匹配,因此兼具高性能与低成本的优点在消费电子(如手机快冲与天线充电).数据中心与人工智能,无人驾驶与新能源汽车、5G通信等团家战略新兴领城具有巨大的应用前景。电子科技大学功率集成技术实验室自2008年起即开展硅基GaN功率器件与集成技术研究,围绕硅基GaN两大核心器件:增强型功率晶体管、功率整流器进行基础研究与应用技术开发。解决了增强型功率晶体管阈值电压大范围调控功率二圾管导通电压调控与耐压可靠性加查等关键技术瓶颈,研究成果为硅基GaN的产业化奠定了重要基础。
电子科技大学 2021-04-10
大容量长循环寿命的锂硫电池
该电池利用了若干种纳米结构的锂硫正极材料,通过将形成纳米级分散的杂化结构,该复合正极材料有很好的导电性,其结构能有效缓冲单质硫在锂化时的体积膨胀,并且有很强的多硫化锂吸附能力,能够阻止多硫化物的穿梭效应,因此锂硫电池的循环稳定性和倍率性能都有很大提升。这种电极材料在单质硫的担载量为80 wt%的情况下,以1.0 C的电流密度循环1500圈后,比容量仍能维持在570 mAh g-1,平均每圈的衰减速率仅为0.026%。更为重要的是,在单质硫的面积负载率高达3.2 mg cm-2下,仍然具有稳定的循环
南京大学 2021-04-14
具有紫外响应的硅基成像器件
传统的CCD、CMOS硅基成像器件都不能响应紫外波段的光信号,这是因为紫外波段的光波在多晶硅中穿透深度很小(<2nm)。但是近年来随着紫外探测技术的日趋发展,人们越来越需要对紫外波段进行更深的探测分析与认识。紫外探测技术是继激光探测技术和红外探测技术之后发展起来的又一军民两用光电探测技术。几十年来,紫外探测技术已经逐渐应用于光谱分析、军事、空间天文、环境监测、工业生产、医用生物学等诸多领域,对现代科研、国防和人民生活都产生了深远的影响。特别是在先进光谱仪器方面,国内急迫需要响应波段拓展到紫外的硅基成像器件。硅基成像器件如CCD、CMOS是应用最广泛的光电探测器件。当前最先进的光谱仪器大都采用了CCD或CMOS作为探测器件,这是因为CCD、CMOS具有灵敏度强、噪声低、成像质量好等优点。但由于紫外波段的光波在多晶硅中穿透深度很小(<2nm),CCD、CMOS等在紫外波段响应都很弱。成像器件的这种紫外弱响应限制了其在先进光谱仪器及其他领域紫外波段探测的使用。 在技术发达国家,宽光谱响应范围、高分辨率、高灵敏度探测器CCD已经广泛应用于高档光谱仪器中。上世纪中叶美国Varian公司开发的Varian700 ICP-AES所使用的宽光谱CCD检测器分辨率达0.01nm,光波长在600nm和300nm时QE分别达到了84%和50%;美国热电公司开发的CAP600 系列ICP所用探测器光谱响应范围更是达到165~1000nm,在200nm时的分辨率达到0.005nm.法国Johinyvon的全谱直读ICP,其所用的CCD探测器像素分辨率达0.0035nm,紫外响应拓展到120nm的远紫外波段。德国斯派克分析仪器公司的全谱直读电感耦合等离子体发射光谱仪一维色散和22个CCD检测器设计,其光谱响应范围为120-800nm。德国耶拿JENA 连续光源原子吸收光谱仪contrAA采用高分辨率的中阶梯光栅和紫外高灵敏度的一维CCD探测器,分辨率达0.002nm,光谱响应范围为189—900 nm。总而言之,发达国家在宽光谱响应和高分辨率高灵敏度探测器件的研制领域已取得相当的成就。主要技术指标和创新点(1)  我们在国内首次提出紫外增强的硅基成像器件,并在不改变传统硅基成像探测器件的结构的基础上,利用镀膜的方法增强成像探测器件CCD、CMOS的紫外响应,使其光谱响应范围拓宽到190—1100nm,实现对190nm以上紫外光的探测。(2)  提高成像探测器的紫外波段灵敏度,达到0.1V/lex.s。(3)  增强成像探测器件的紫外响应的同时,尽量不削弱探测器件对可见波段的响应。(4)  选用适合的无机材料,克服有机材料使用寿命短的缺陷。 紫外探测技术已经逐渐应用于光谱分析、军事、空间天文、环境监测、工业生产、医用生物学等诸多领域,对现代科研、国防和人民生活都产生了深远的影响。特别是在先进光谱仪器方面,国内急迫需要响应波段拓展到紫外的硅基成像器件,该设计与传统CCD、CMOS结合,能满足宽光谱光谱仪器所需的紫外响应探测器的需要。能提高光谱仪器光谱响应范围,在科学实验和物质分析和检测中具有很广的市场前景。 该设计样品能取代传统CCD、CMOS,应用于大型宽光谱光谱仪器上,作为光谱仪的探测器件。将传统光谱仪器的光谱检测范围拓宽到190—1100nm. 实现紫外探测和紫外分析。具有较强的市场推广应用价值。
上海理工大学 2021-04-11
关于硅基光量子芯片的研究
北京大学物理学院“极端光学创新研究团队”王剑威研究员和龚旗煌院士领导的课题组,与英国、丹麦、奥地利和澳大利亚的学者合作,实现了硅基集成光量子芯片上的多体量子纠缠和芯片-芯片间的量子隐形传态功能,为芯片上光量子信息处理和计算模拟的应用,奠定了坚实的基础。相关研究成果于近日发表在国际顶级物理期刊Nature Physics(https://www.nature.com/articles/s41567-019-0727-x)。 集成光量子芯片技术,结合了量子物理、量子信息和集成光子学等前沿学科,通过半导体微纳加工制造高性能且大规模集成的光量子器件,实现对光量子信息的高效处理、计算和传输等功能。其中,利用硅基平面光波导集成技术的光量子芯片具有诸多独特优势,包括集成度高、稳定性好、编程操控性优越和可单片集成核心光量子器件等,因此被认为是一种实现光量子信息应用的重要手段之一。 A. 硅基量子隐形传态和多光子量子纠缠芯片的示意图,左上角为集成量子光源的电子显微镜图;B. 量子隐形传态的量子线路图;C. 量子纠缠互换的量子线路图;D. GHZ纠缠制备的量子线路图 北京大学研究团队与布里斯托尔大学、丹麦科技大学、奥地利科学院、赫瑞-瓦特大学和西澳大利亚大学科研人员密切合作,在硅基光量子芯片技术和应用方面取得了突破性进展。研究团队发展了一种基于微环谐振腔的高性能集成量子光源,通过硅波导的强四波混频非线性效应,实现了光子全同性优于90%、无需滤波后处理的50%触发效率的单光子对源,达到了对4组微腔量子光源阵列的相干操控,片上双光子量子纠缠源的保真度达到了92%。团队实现了关键的可编程片上双比特量子纠缠门,可以按照功能需要切换贝尔投影测量和量子比特焊接操作,通过量子态层析实验确认了高保真的双比特纠缠操作。 研究团队在单一硅芯片上实现了高性能量子纠缠光源、可编程双比特量子纠缠门,以及可编程单量子比特测量的全功能集成,进而实现了三种核心量子功能模块——芯片上四光子真纠缠、量子纠缠互换、芯片-芯片间的高保真量子隐形传态。通过对两对纠缠光子对进行量子比特焊接操作,团队实现并判定了四比特Greenberger-Horne-Zeilinger (GHZ) 真量子纠缠的存在;通过对两对纠缠光子中各一个光子进行贝尔投影操作,实现了量子纠缠互换功能,使来自不同光子源的光子间产生了量子纠缠;利用两个芯片间的量子态传输和量子纠缠分布技术,实现了两个芯片间任意单量子比特的量子隐形传态,达到了近90%的隐形传态保真度。 团队研制的硅基多光子量子芯片尺寸仅占几平方毫米,比传统实现方法小了约5-6个数量级,不仅达到了器件的微型化,同时具备了单片全功能集成、器件编程可控、系统性能优越等特点,其中量子隐形传态保真度优于已报道的其它物理实现方法。多体量子纠缠体系的片上制备与量子调控技术,为片上量子物理基础研究和片上光量子信息处理传输、量子计算模拟的应用提供了重要基础。
北京大学 2021-04-11
硅基光电子集成技术
 基于硅材料和CMOS工艺制备光电子器件及其集成技术,可实现低成本、批量化生产,并具有和微电子单片集成的潜力,是目前国际光电子前沿研究领域。该技术不仅可以用于片上光互连,也可为骨干网、光接入网和数据中心提供高性能、低成本收发模块。 在国家973计划项目《超高速低功耗光子信息处理集成芯片与技术基础研究》的支持下,针对硅基材料不具备线性电光效应、而利用自由载流子等离子色散效应实现电光调节效率低、功耗高等科学难题,提出了一系列解决思路和具有创新性的器件结构,形成了硅基光电子集成器件设计方法和基于CMOS工艺的制备工艺流程,成功制备了一系列硅基光电子集成芯片。 该技术不仅为我国硅基光电子集成技术的发展和华为等知名电信设备企业新一代产品提供了有力的技术支撑,也引起了国际同行的密切关注。美国光学学会《Optics & Photonics News》曾出版专题报道“Integrated Photonics in China”,对本项目的部分工作进行了介绍。2014年底,Nature Photonics将本项目首次在硅基上研制成功的大容量可编程光缓存芯片作为Research Highlight加以报道。高速低功耗16*16光交换芯片版图大容量可编程光缓存芯片(左:芯片照片,中:封装后的结构,右:性能测试结果)为华为公司研制的400G可调光模块。
上海交通大学 2021-04-13
新型硅基环栅纳米线MOS 器件
已有样品/n在主流硅基FinFET集成工艺基础上,通过高级刻蚀技术形成体硅绝缘硅Fin和高k金属栅取代栅工艺中选择腐蚀SiO2相结合,最终形成全隔离硅基环栅纳米线MOS器件的新方法。并在取代栅中绝缘硅Fin释放之后,采用氧化和氢气退火两种工艺分别将隔离的“多边形硅Fin”转化成“倒水滴形”和“圆形”两种纳米线结构。
中国科学院大学 2021-01-12
硅基毫米波集成电路设计
基于CMOS工艺,设计了大量射频、毫米波收发机和频率源芯片; CMOS 90nm 60GHz 接收机芯片,集成片上天线,传输效率优于IBM芯片90%; CMOS 90nm 21dBm 60GHz功率放大器,性能优于Hittite商用GaAs芯片; CMOS 60GHz 移相器芯片,为开发毫米波相控阵芯片奠定良好基础;
电子科技大学 2021-04-10
1 2 3 4 5 6
  • ...
  • 91 92 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1