高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
Si基GaN功率半导体及其集成技术
随着便携式电子设备的快速发展,将微型电子设备运用到可穿戴设备或者作为生物植入物的可行性越来越大。用柔性电子器件来替代传统的硬质电子器件的重要性也愈加凸显,如何解决柔性电子设备的储能问题,是实现这些可能性的重要因素之一。 本成果设计并制备了一种新型柔性微型超级电容器,其具有制备工艺简单,成本较低,适用于各种粉末状电极材料等特点。
电子科技大学 2021-04-10
低成本钒基固溶体贮氢合金
成果描述:氢能做为一种新型能源,以其清洁、高效、来源广泛等优点引起了人们的广泛关注。贮氢合金是发展历史最长、技术最为成熟的储氢介质,在体积储氢密度、工作温度、工作压力、吸放氢动力学性能和安全性等方面都具有优势。 常用的AB5、AB2及AB型储氢合金的储氢量一般都不超过2wt%,限制了其工程应用。钒钛基储氢合金具有超过3.8wt%的理论贮氢量,常温附近放氢量可接近3.0wt%,热力学及动力学性能良好,有望在燃料电池驱动的器件上得到广泛应用。 在863和各级省市政府支持下,已经形成如下技术成果: 1.形成了具有自主知识产权的V-Ti-Cr-Fe四元合金体系,其钒含量可在20-60wt%变化; 2.这类合金多数可用价廉的FeV80中间合金制备,相对于用纯金属钒制备,合金材料成本下降到10%左右,解决了这类合金应用的成本制约因素; 3.这类合金无需活化处理,可直接在室温下吸放氢,298K下6分钟内合金吸氢量普遍超过3.6wt%; 4.截止压为0.01MPa时,部分合金298K放氢量超过2.5wt%,278K吸氢后333K放氢量超过3.0wt%,是目前已见报道的含Fe的低成本钒钛基储氢合金中0.01MPa截止压下放氢量最高的。市场前景分析:近年来,用质子交换膜燃料电池驱动的便携电源、不间断电源、燃料电池自行车、三轮代步车等在国内外市场上悄然兴起,氢燃料电池汽车、潜艇等技术也逐渐成熟并形成市场,钒钛基贮氢合金可以作为氢源为质子交换膜电池提供氢气。与同类成果相比的优势分析:低成本钒钛基贮氢合金项目已与加拿大和国内2家企业等企业开展合作,其中拟与加拿大开展合作建立低成本钒钛基贮氢合金生产线。国内正共同开发制氢-贮氢-燃料电池-燃料电池汽车示范工程,钒钛基贮氢合金系统将作为其中重要的一环。
四川大学 2021-04-10
Si基GaN功率半导体及其集成技术
电子科技大学功率集成技术实验室(Power Integrated Technology Lab.-PITEL)自2008年就已经开展Si基GaN(GaN-on-Si)功率器件的研究,是国内最早开展GaN-on-Si功率半导体技术研究的团队。近年来在分立功率器件如功率整流器、增强型功率晶体管及其集成技术方面取得了突出的研究成果。2008年在被誉为“器件奥林匹克”的国际顶级会议IEDM上报道了GaN-on-Si开关模式Boost转换器,国际上首次实现了GaN-on-Si单片集成增强型功率晶体管和功率整流器
电子科技大学 2021-04-10
低成本钒基固溶体贮氢合金
化石能源的枯竭和环境污染问题是推动全球新能源开发热潮的两大因素。氢能做为一种新型能源,以其清洁、高效、来源广泛等优点引起了人们的广泛关注。贮氢合金是发展历史最长、技术最为成熟的储氢介质,在体积储氢密度、工作温度、工作压力、吸放氢动力学性能和安全性等方面都具有优势。 常用的AB5、AB2及AB型储氢合金的储氢量一般都不超过2wt%,限制了其工程应用。钒钛基储氢合金具有超过3.8wt%的理论贮氢量,常温附近放氢量可接近3.0wt%,热力学及动力学性能良好,有望在燃料电池驱动的器件上得到广泛应用。 在863和各级省市政府支持下,已经形成如下技术成果: 1.形成了具有自主知识产权的V-Ti-Cr-Fe四元合金体系,其钒含量可在20-60wt%变化; 2.这类合金多数可用价廉的FeV80中间合金制备,相对于用纯金属钒制备,合金材料成本下降到10%左右,解决了这类合金应用的成本制约因素; 3.这类合金无需活化处理,可直接在室温下吸放氢,298K下6分钟内合金吸氢量普遍超过3.6wt%; 截止压为0.01MPa时,部分合金298K放氢量超过2.5wt%,278K吸氢后333K放氢量超过3.0wt%,是目前已见报道的含Fe的低成本钒钛基储氢合金中0.01MPa截止压下放氢量最高的。 主要技术指标:1.298K下吸氢量大于3.6wt%。 2.截止压力为0.01MPa时,298K下放氢量大于2wt%;部分合金的放氢量大于2.5wt%,278K吸氢后333K放氢量超过3.0wt%。 应用范围:近年来,用质子交换膜燃料电池驱动的便携电源、不间断电源、燃料电池自行车、三轮代步车等在国内外市场上悄然兴起,氢燃料电池汽车、潜艇等技术也逐渐成熟并形成市场,钒钛基贮氢合金可以作为氢源为质子交换膜电池提供氢气。
四川大学 2021-04-11
4-哌啶基哌啶的生产技术
本发明涉及一种治疗肿瘤药物的新的制备方法。 癌症是人类健康的大敌,目前的抗癌药物大都存在着较大的副作用,限制了用药量, 从而降低了疗效。另外,如果患者长期服用某一种抗肿瘤药物,肿瘤细胞就会产生抗药 性,抑制了疗效的发挥。4-哌啶基哌啶能够抑制肿瘤细胞的繁殖,溶解其他抗肿瘤药物 的抗体,当它与其他抗肿瘤药物配合使用时,能够大大提高它们的抗肿瘤效果。因此, 能够解决癌症治疗中存在的药量受限,副作用大,抗药性等问题。同时,4-哌啶基哌啶 也是合成其他抗肿瘤药物的一个非常重要的中间体。因此,4-哌啶基哌啶的制备对于癌 症的治疗具有重要的意义。 本发明提供了一种肿瘤治疗药物 4-哌啶基哌啶的全合成制备方法。 本发明采用廉价,易得的苄胺和丙烯酸甲酯为起始原料,依次经过 1,4-加成反应, 迪克曼(Dieckmann)缩合反应,水解脱羧反应,1,2-加成反应,和氢解反应最终制得 本发明的最终产物 4-哌啶基哌啶。发明所用的原料来源广,供应充足,价格便宜且反应 条件温和易于控制,无须复杂的实验设备,易于实际工业化生产。
同济大学 2021-04-13
新型硅基环栅纳米线MOS 器件
已有样品/n在主流硅基FinFET集成工艺基础上,通过高级刻蚀技术形成体硅绝缘硅Fin和高k金属栅取代栅工艺中选择腐蚀SiO2相结合,最终形成全隔离硅基环栅纳米线MOS器件的新方法。并在取代栅中绝缘硅Fin释放之后,采用氧化和氢气退火两种工艺分别将隔离的“多边形硅Fin”转化成“倒水滴形”和“圆形”两种纳米线结构。
中国科学院大学 2021-01-12
阳离子基阻变器件电流-保持特性
已有样品/n通过石墨烯缺陷工程控制活性电极离子向阻变功能层中注入的路径尺寸和数量,集中化/离散化阳离子基阻变器件中导电通路的分布来调控其稳定性,此工作是该领域首次在相同结构阻变器件中实现电流-保持特性的双向调控,这种通用的基于二维材料阻挡概念的离子迁移调控方法,也能够移植应用到离子电池,离子传感等研究领域。
中国科学院大学 2021-01-12
制作斜面培养基的可调式支架
本实用新型公开一种制作斜面培养基的可调式支架,包括底板以及垂直设置在底板上的支撑座、限位板和支撑板,底板上还设置有滑轨,限位板和支撑板可沿所述滑轨左右滑动;支撑座上设置有支撑凹槽,限位板上设置有限位通孔,支撑板上设置有卡槽;本实用新型通过左右滑动支撑板改变试管的倾斜角度,并通过滑动限位板实现限位,达到一架多用的目的,有效保证了培养基在制作过程中的稳定性,且支撑板的高度可设计成高度可调的形式,进一步扩宽应用范围;另外在底板上设置有刻度线、凸板上设置标示卡,方便实验人员进行记录和观察,操作方便,结构设计简单,保证了实验的稳定性,具有广泛的实用价值。
青岛农业大学 2021-04-13
基于丝蛋白基的天然化妆品
中国化妆品市场增速始终高于世界平均水平。数据显示,2017年全国化妆品市场规模达到3616亿元,同比增速达到10%。从增速来看,自2012年到2015年我国化妆品市场规模增速不断下滑,到2017年增速明显提升,未来发展空间巨大。 从化妆品品类上看,我国化妆品市场表现出鲜明的地域特色。在我国,全球彩妆品类占比为14%,我国仅为9.5%,全球香水品类约占比为10.62%,而我国仅为1.70%。护肤品是化妆品中的肤用化妆品子类,主要具有清洁皮肤及补充皮肤养分等功能,如洗面奶、面霜、面膜等。目前市场规模呈高速膨胀态势,行业仍处于成长期。 护肤品包括面部护理、身体护理、手部护理和护理套装四大品类,是化妆品行业中规模最大的子行业。2014年中国护肤品市场规模突破1500亿元,2017年达到1787亿元,到2020年,我国护肤品市场规模将突破2000亿元。
浙江大学 2023-05-10
钛基氧化物涂层阳极的制备
通过添加一种或几种贵金属、稀土及其它添加剂,采用热分解法制备不同成分的钛基氧化物涂层阳极,采用特殊方法增强涂层与基体间结合力,研制出了适合海水条件下的金属氧化物阳极涂层,提高了电化学性能和物理性能。产品主要包括:钌钛阳极、钌铱钛阳极、钌铱钴阳极、铱锡钛阳极、钌铱锡钛阳极等。特点:1、电流效率高:与石墨阳极相比,在相同的电流密度下,可降低槽电压约1V ;2、电极使用寿命长: 石墨电极一般使用寿命2—8个月,涂钌钛阳极可使用5—10年,提高15—3
大连理工大学 2021-04-14
首页 上一页 1 2
  • ...
  • 83 84 85
  • ...
  • 324 325 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1