高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高效的二氧化碳电催化剂
通过将酞菁铜(CuPc)分子与碳纳米管复合,得到了高效的二氧化碳电催化剂。它可以在较低过电位下将二氧化碳高选择性地还原为甲烷,其法拉第效率达到66%(图3),是目前产甲烷的活性最高的电催化材料。不同于该课题组此前报道的单分散的CoPc/CNT催化剂(Nat. Commun. 2017,8,14675),CuPc分子晶体以堆积状态分散于CNT之中(图3b)。原位在线X射线吸收(XAS)研究发现,堆积状态下的CuPc分子在催化工作电位下会自发转变为尺寸为2nm左右的铜纳米团簇,是高催化活性位点;当停止催化反应后,铜纳米团簇又会可逆地回到CuPc分子结构(图3c-e)。不同于CuPc,另外两种铜配合物HKUST-1和[Cu(cyclam)]Cl2在催化反应电位下都不可逆地转变为金属铜微米枝晶,因此催化活性和选择性远低于CuPc/CNT
南方科技大学 2021-04-13
高效纳米级工业水处理除氯剂的制造技术
氯根是原水中所含的CL-1 是天然水中重要的阴离子。由于近年来水资源的短缺人们开始使用地下水或者其他自然水源,使锅炉补水中的氯离子含量居高不下,且在炉内高浓缩条件下氯根可达2000mg/L以上。锅炉内氯根含量高可能造成氯的腐蚀,成为锅炉运行的隐患之一。 同样工业循环冷却水在浓缩过程中,除重碳酸盐浓度随浓缩倍数增长而增加外,其他的盐类如氯化物等的浓度也会增加。当Cl-离子浓度增高时,会加速碳钢的腐蚀。Cl-会使
南开大学 2021-04-14
解吸池及分子印迹搅拌棒微萃取-高效液相色谱在线联用装置
本技术成果研发了一种微波辅助提取-高速逆流色谱联用方法及其装置。首先采用微波辅助提取模式 本技术成果研发了一种适于装载分子印迹搅拌棒的解吸池,包括一上部池体及一下部池体。上部池体 提取物料;然后提取液浓缩预分离;最后通过高速逆流色谱纯化制备得到目标组分或分析天然产物提取液 的底部连接于下部池体的顶部且两者内部形成一上下贯通的解吸腔,上部池体顶部设有一液流出口,下部 中的目标组分;上述步骤通过接口及转换控制实现微波辅助提取、分离、纯化、高速逆流色谱制备或分析 池体下部圆周对称地均布有三个液流入口,液流出口及液流入口与所述解吸腔连通;还包括一分子印迹搅 于一体,可直接从天然产物中提取得到毫克级高纯度对照品,具有快速高效、高选择性的特点,实现天然 拌棒,放置于所述解吸腔中;还包括一密封圈,密封所述上部池体及下部池体的连接部。上述解吸池配以 产物快速高效的在线提取分离、纯化制备或分析。“天然物质提取分离纯化的实验室制备微波装置”集微 微量注射泵可实现对分子印迹搅拌棒的高效流动加热解吸。另外在该解吸池的基础上,通过与高效液相色 波辅助提取快速高效分离的优势和高速逆流色谱高效纯化、制备
中山大学 2021-04-10
有机膦酸类阻垢缓蚀剂的离子色谱分离分析方法
本发明涉及膦酸盐阻垢缓蚀剂的离子色谱分离分析方法,特别涉及等度分离非抑制电导检测的膦酸盐阻垢缓蚀剂的离子色谱分离分析方法。包括以下步骤:基线测绘、进样和离子交换、洗脱、非抑制电导检测分析;本发明对三种常用膦酸盐阻垢缓蚀剂能进行良好的分离分析,保留时间、峰高、峰面积的相对标准偏差均小于4%,工艺流程大为简化,本方法可用于膦酸盐阻垢缓蚀剂含量的检测,为也可同时检测实际样品的纯度。
浙江大学 2021-04-11
具有抗反极功能的高耐久、高性能燃料电池催化剂
燃料电池催化剂是燃料电池最重要的材料,其性能的好坏对燃料电池性能有决定性的影响。针对目前广泛使用的 Pt/C 类燃料电池 存在的耐久性不足、缺乏抗反极功能等问题,本团队研发了一种具有良好性能的燃料电池催化剂,具有以下技术优势:(1)催化活性可完全媲美目前国际品牌的优秀催化剂;(2)耐久性可达商品催化剂的 3-4 倍,可达到美国能源部对燃料电池催化剂的耐久性要求;(3)具有优秀的抗反极性能,其抗反极时间可比目前的商品催化剂延长 3 倍左右。(4)成本仅为目前市场上燃料电池催化剂的 40%左右。 
华南理工大学 2023-05-08
一种抗疟剂药物中间体材料的制备及合成工艺
青蒿素是目前为止最热门的抗疟疾特效药,由于它速效和低毒的 用药特点,现已作为世界卫生组织推荐的药品。青蒿素从植物的花蕾 和叶子中分离提取,但近来因为青蒿素的大肆提取,生态平衡遭到破 坏,资源枯竭,所以不宜长久提取;此外,由于患者大多为贫苦地区 的人民,购买力低下,承受不起青蒿素高昂的价格。对此,科学家们 开始研究新的药物,希望能降低治疗的成本,也可以减少青蒿素的用 量,保护生态环境。 在研发新药物的过程中,研究工作者发现一类含 trioxolane 单元 的分子药物对于疟疾的抗击有着很好的效果。通过对药物进行改造研 究,研究人员得到了药物性能优异的类似物 OZ439。通过口服,OZ439 能完全消灭人体当中的寄生虫,现如今 OZ439 的合成已在瑞士进行 了中试生产。 本项目是通过廉价的反应材料,经过催化转化制备合成 OZ439的 所需重要中间体 HPCH。目前实验室已完成了催化剂的筛选和合成工 作,所制备的催化剂在温和的反应条件下可以获得较高收率的 HPCH, 其生产成本低于国外药企的要求。 开发计划:催化剂的放大制备及反应工艺的放大研究及优化,催 化剂的循环利用和产品的分离及纯化。本项目初期一直与国外药企进 行沟通合作,工艺优化后即可进入产业化阶段。 所需条件支持:希望能获得 100 万经费支持与 100m2 实验室支持,用于购置反应评价及催化剂放大制备设备。 
南开大学 2021-04-13
一种高效亲水化改性抗污染聚醚砜膜的制备方法及应用
本发明涉及一种高效亲水化改性抗污染聚醚砜膜的制备方法及应用。制备方法包括对纯聚醚砜膜的物理共混亲水化改性和化学接枝亲水化改性两个部分,通过表面引发的可逆加成断裂链转移聚合法(RAFT)合成亲水性嵌段聚合物,随后将其与聚醚砜物理共混,制备PES/PAA?F127?PAA膜;用电子转移活化再生催化剂?原子转移自由基聚合法(ARGET ATRP)合成强亲水性物质NH2?PDMAPS,在共混改性基础上,利用化学接枝方法制备高效亲水化改性抗污染聚醚砜膜。本发明使用高效绿色的RAFT和ARGET ATRP两种聚合方法设计分子,结构新颖,反应条件温和,亲水化改性方法效果更明显,在油水分离领域有广泛的应用前景。
东南大学 2021-04-11
两相流固相颗粒电容在线计量技术
根据两相流中固相或者液相介电常数和气相的差异,实现介质浓度的测量,通过相关法获取流动速度,从而实现固相或者液相流量的测量。经过不断的技术改进,目前该技术可以实现超低浓度下流量的非接触式测量。
南京工业大学 2021-01-12
一种用于Pb2+分离的磁纳米固相萃取剂的制备方法
一种用于Pb2+分离的磁纳米固相萃取剂的制备方法,以Fe3O4纳米颗粒为磁核,以去离子水和乙醇的混合液为溶剂,加入25%的浓氨水,占总体积分数的5%,混合均匀后于反应容器中恒温搅拌水浴加热30分钟后滴加A,反应1小时后加入B,升温至60℃回流1小时后,冷却,洗涤,干燥后加入乙醇溶剂或氯仿溶剂中,然后加入C,40℃恒温搅拌12-24小时;洗涤,低温干燥后即得用于Pb2+分离的磁纳米固相萃取剂.所述A修饰剂含有正硅酸酯类,B修饰剂含氯功能化的硅氧偶联剂,C修饰剂为双硫腙.本发明制备的磁纳米固相萃取剂,吸附量大,速率快,工艺简单,成本低,绿色环保,适合于大规模工业生产.
上海理工大学 2021-05-04
低温下即具有极高反应活性的fcc相Ru纳米粒子催化剂
该研究工作首先使用DFT理论计算了fcc相与hcp相Ru的Wulff平衡结构模型里各个表面的CO解离势垒。CO解离通常被认为是费托合成的决速步,而CO解离势垒的大小可以反映出催化剂的费托合成活性。计算结果表明hcp相Ru(0001)面的Step-B台阶位具有最低的CO解离势垒,但在真实纳米粒子体系中较难暴露,而fcc相Ru具有(100)、(211)面以及(111)面Step-B台阶位等一系列CO解离势垒较低的表面,有可能具有非常好的费托合成催化活性。   根据DFT计算结果,设计合成了以fcc相Pt纳米晶为核,外延生长fcc相Ru的Pt-Ru core-shell结构纳米催化剂。该催化剂在393-433 K的较低温度下即表现出远高于hcp相Ru的费托合成催化活性,433 K下活性可达 37.8 molCO·molRu-1·h-1 ,这是目前相同温度下报道的活性最高的费托合成催化剂。同时该催化剂也具有非常好的产物选择性与稳定性。经过对催化剂结构的详细表征,利用STEM、XAFS、XRD等手段对该fcc Pt-Ru纳米催化剂的结构进行了模拟重建,证实了该催化剂具有超高活性位密度,表面大量暴露Ru(100)、(211)以及(311)等具有优异的CO活化能力的结构,   其活性位密度是此前最好的hcp Ru催化剂的1-2个数量级以上。证明了fcc Ru催化剂相比hcp Ru具有更好催化性能的本质是具有更密集的催化活性位点。
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 10 11 12
  • ...
  • 222 223 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1