高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
超宽光谱微弱光探测及成像芯片研制
受到技术出口限制等原因,目前,我国的红外探测技术无论是在技术水平、产品性能、灵敏度、应用范围等方面还具有很大的局限。本项目采用新颖量子点纳米材料,制备新型结构高灵敏度光电探测器,以窄带隙IV-VI族半导体纳米材料为光敏感层,研发红外上转换光子探测器,实现对微弱入射光(特别是红外光)进行探测及成像的芯片设计,并用于其他安监和夜视应用研究。实现从紫外到中波红外(20µm)的一体化、超宽谱段的微弱光探测与成像。完成超宽光谱微弱光探测及成像芯片制备,实现红外领域高精尖技术的自主可控及大面积的推广应用,真正实现红外“中国芯”,意义重大、市场广泛。
北京理工大学 2023-05-09
智能芯片驱动 LED 集成化照明模组
基于分布式芯片驱动的 LED 集成化照明模组,将驱动与光源集成为一体化标准模组,克服了开关电源的电解电容寿命瓶颈、可靠性差、成本高等缺点,具有可靠性高、 寿命长、结构简单、模块化设计、安装方便、免维护、智能化、成本低等优点。结合窄带物联网(NB-IoT)、Zigbee、 LoRa 等无线通讯技术,实现了大数据物联网平台的智慧城市照明系统,通过精细化运营管理,可达到 70%的节能减排效果。实现驱动芯片化、模组集成化、通讯无线化、软件智慧化、系统物联化。 
中国科学技术大学 2021-04-14
CMOS可视芯片及其衍生产品―电脑眼
由西安交大开元集团自主开发的CMOS可视芯片是目前国际先进、国内领先的视觉芯片,具有集成度高、功能全、体积小、功耗低的特点。以CMOS可视芯片为核心部件的彩色电脑眼是新一代计算机图像输入器件,具有数码相机、电子相册、三维传真、动态录像EMAIL、网络可视电话、视频会议和智能遥控报警等多种功能。该项目已被列入国家高新年技术产业化示范工程。
西安交通大学 2021-01-12
宽带长距离传输光接收集成芯片
本项目针对国内高端光电子器件严重依赖进口的现状问题,自主研制Tb/s级以上 PDM-16QAM的硅基大规模阵列集成相干光接收芯片。根据本研究组在硅基集成光电子器件、偏振控制器件、光混频器等方面的建模仿真、制备测试基础,依托“先进电子材料与器件”校级平台的先进半导体加工能力,制备了高偏振消光比的偏振分束器、偏振旋转器,高相位精度的90度混频器,大带宽高响应度的探测器阵列,高效硅基芯片-光纤耦合,以及可调光功率衰减器。 通过本项目的实施,在硅基光接收集成芯片、高端光电子器件及其大规模集成的关键技术领域有所突破,建立关键工艺技术与器件标准库,形成硅基光电子器件标准加工工艺流程,实现高端光电子器件的自主制备,改变了我国硅基光电子器件技术无偿地向国外转移的历史,缩短我国光子集成技术与国际先进水平的差距,提升我国光通信产业的竞争力。部分成果获得2014年度上海市发明二等奖。
上海交通大学 2021-04-13
芯片封装用抗静电复合材料
ABS塑料是丙烯腈(A)、丁二烯(B)、苯乙烯(S)三种单体的三元共聚物,三种单体相对含量可任意变化,制成各种树脂。ABS塑料是一种原料易得、综合性能良好、价格便宜、用途广泛的“坚韧、质硬、刚性”材料。在机械、电气、纺织、汽车、飞机、轮船等制造工业及化工中获得了广泛的应用。但是普通ABS塑料容易产生静电,严重限制了ABS塑料在精密材料、计算机材料等领域的应用。 研究团队面向半导体工业芯片封装中抗静电需求,制备具有优良导电性能和机械强度的ABS/石墨烯复合抗静电材料,大大拓展了ABS的应用领域。相关研究洪文晶教授曾获教育部自然科学奖一等奖。 技术成熟度 研究团队充分利用石墨烯的导电性,用原位聚合的方法,制备出石墨烯/ABS抗静电复合材料。通过双电测四探针测试仪测试出电导率在1×10-5S.cm-1~1×10-6S.cm-1,具有良好的导电性能。力学性能测试满足产品要求。本技术的技术路线已完全走通,正进一步对生产工艺和成分配比进行优化。 投产条件和预期经济效益 以ABS树脂为原材料,添加石墨烯作为导电剂。利用石墨烯良好的导电性,通过原位聚合的方法将石墨烯与ABS均匀的混合,制备出良好的导电性材料。产品面向精密电子元件的封装和防护,随着我国精密设备和半导体产业的发展,本产品将有广阔的市场空间。
厦门大学 2021-01-12
电动汽车动力电池管理专用芯片
成果与项目的背景及主要用途: 电动汽车作为 21 世纪汽车工业改造和发展的主要方向,目前已从实验开发试验阶段过渡到商品性试生产阶段,世界上许多知名汽车厂家都推出了具有高科技水平的安全或环保型号概念车,目的是为了引导世界汽车技术的潮流。电动汽车动力电池管理专用芯片的开发,电池管理系统作为电池保护和管理的核心部件,不仅要保证电池安全可靠的使用,而且要充分发挥电池的能力和延长使用寿命,作为电池和车辆管理系统以及驾驶者沟通的桥梁,电池管理系统对于电动汽车性能起着关键性的作用。 技术原理与工艺流程简介: 电动汽车动力电池管理专用芯片用于电动汽车动力电池在电压、电流和温度测量,并具备单体电池均衡管理和电池包的保护功能。14 位 Delta-Sigma 型模数转换器,实现高精确度(相对准确度 0.5%)和宽范围线性度。采用 BCD 混合信号工艺,高电压大电流的电路实现。 电路芯片的功能包括多通道电压/电流/温度采样,通讯接口功能,均衡电路控制和驱动功能。核心电路模数转换器 14 位精度,误差增益小于 1%。芯片工作温度-40℃ ~ 125℃。 应用前景分析及效益预测: 考虑到一次性成本和重复性成本,以及客户的承受能力,单套电动汽车电池组管理系统的售价大约为 0.6 万元左右。产业化量产后前 2 年只要销售 1400 套以上,销售收入预计 850 万元左右即可实现盈利。 应用领域:电动车制造业 技术转化条件: 五十平方米以上的办公用房,电脑、工作站若干,相应软件,也可与卡片封装单位共同合作。 合作方式及条件:根据具体情况面议
天津大学 2021-04-11
大功率复杂波形激光脉冲种子源
大功率复杂波形激光脉冲种子源主要用于产生高功率的复杂波形激光脉冲。在MOPA(Master Oscillator Power Amplifier)系统中的输出光脉冲,会因系统内部的多次光放大而带来波形劣化。克服该技术缺陷的主要手段是对种子光脉冲进行整形,以修正最终的高功率脉冲波形。这要求种子源系统输出的光脉冲能同时满足大功率和复杂波形。 MOPA系统主要应用于需要强激光脉冲的激光标记、材料加工、或其它特殊领域,大功率复杂波形激光脉冲种子源是提升输出激光脉冲质量的核心技术。
电子科技大学 2021-04-10
用于大功率LED散热的回路热管装置
针对现有大功率LED散热所面临的主要技术瓶颈,提出了一种大于大功率LE。散热的回路热管装置,具有散热效率高、散热设计能满足造型需求、均温性好、结构紧凑、加工方便、热阻小、重量轻、成本低、节能效果显著等特点。 该大功率LED散热的回路热管装置,包.括  大功率LED、蒸发器、循环管、冷凝器、储液器,蒸发器为平板状,基发器的壁面直接与大功率LED焊接,吸收掉大功率LED灯热量的蒸发器通过循环管连接至fJ可释枷芝量的冷凝器,循环管穿过储液器伸入至蒸发器内部。 所述平板状蒸发器内部和所述储液器内部都平铺有能吸附工质液体的物质结构,且蒸发器内部和储液器内部的能吸附工质液体的勃质结构是连为一体的。所述通过储液器回流入平板式蒸发器内部的回流管段部分在其管壁上开有数个便于工质液体尽快回流到蒸发器内的毛细结构上的小孔。所兰平板式蒸发器与储液器之间用可有效地防止蒸发器中的蒸气窜入储液器的悉气挡枚隔离开。 该大功率LED散热的回路热管装置散热效率高、散热设计能满足造型需求、均温性好、结构紧凑、加工方便、热阻小、重量轻、成本低、节能效果显著。
上海理工大学 2021-04-11
新型Zn-NiOOH高功率原/充电电池
推出了适用于数码产品的新一代原电池—Zn-NiOOH碱性原电池。这种新电池的大功率放电能力很强,在大功率放电情况使用时间可达碱锰电池的数倍以上。这种新电池利用NiOOH材料替代EMD正极材料在碱锰电池生产线上组装而成,NiOOH是制备这种新电池的关键。国内南孚电池公司在本课题组第一代NiOOH生产技术的基础上于2003年底面向市场推出了数码聚能镍干原电池的产品。但镍是战略性资源,价格比较贵,仅用作一次性电池正极材料,不仅是对资源的浪费,而且在成本上也不是具有很大的优势。因此本课题组进一步研制了高性能充电态的NiOOH正极材料并与Zn直接组装成高功率的Zn-NiOOH新型原/充电电池。这种电池具有工作电压高、大功率放电能力强、比能量高、免维护、环保等优点。Zn-NiOOH新型原/充电电池即可以象干电池一样买来不用充电就可方便的直接使用,又能反复充放电作为充电电池使用,与Zn-AgO电池的性能很接近,但成本却要要低。
厦门大学 2021-04-11
大功率激光照明用新型发光材料
研究团队以钇铝石榴石体系(YAG:Ce3+黄色荧光材料)和氮化物体系(CaAlSiN3:Eu2+红色荧光材料)为研究对象,率先开发出高导热YAG:Ce3+基复相黄色荧光陶瓷,其在50W∙mm-2的高光通量密度蓝光激光激发下,仍能保持优异的可靠性,该产品已与企业合作开发出汽车前照大灯。为了获得高显色指数的激光白光,通过考察晶粒择优取向、烧结助剂和组合烧结工艺等对材料致密化、微观结构的影响,首次制备得到致密的CaAlSiN3:Eu2+红色荧光陶瓷。
厦门大学 2021-04-11
首页 上一页 1 2
  • ...
  • 15 16 17
  • ...
  • 48 49 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1